Self-optimization of performance-per-watt for interleaved memory systems

  • Authors:
  • Bithika Khargharia;Salim Hariri;Mazin S. Yousif

  • Affiliations:
  • University of Arizona, Tucson, AZ;University of Arizona, Tucson, AZ;Intel Corporation, Hillsboro, OR

  • Venue:
  • HiPC'07 Proceedings of the 14th international conference on High performance computing
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

With the increased complexity of platforms coupled with data centers' servers sprawl, power consumption is reaching unsustainable limits. Memory is an important target for platform-level energy efficiency, where most power management techniques use multiple power state DRAM devices to transition them to low-power states when they are "sufficiently" idle. However, fully-interleaved memory in high-performance servers presents a research challenge to the memory power management problem. Due to data striping across all memory modules, memory accesses are distributed in a manner that considerably reduces the idleness of memory modules to warrant transitions to low-power states. In this paper we introduce a novel technique for dynamic memory interleaving that is adaptive to incoming workload in a manner that reduces memory energy consumption while maintaining the performance at an acceptable level. We use optimization theory to formulate and solve the power-performance management problem. We use dynamic cache line migration techniques to increase the idleness of memory modules by consolidating the application's working-set on a minimal set of ranks. Our technique yields energy saving of about 48.8 % (26.7 kJ) compared to traditional techniques measured at 4.5%. It delivers the maximum performance-per-watt during all phases of the application execution with a maximum performance-per-watt improvement of 88.48%.