User experience modeling and enhancement for virtual environments that employ wide-field displays

  • Authors:
  • James J. W. Lin;Donald E. Parker

  • Affiliations:
  • Siemens Corporate Research, Princeton, NJ;Human Interface Technology Laboratory, University of Washington, Seattle, WA

  • Venue:
  • ICDHM'07 Proceedings of the 1st international conference on Digital human modeling
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

User experience in virtual environments including presence, enjoyment, and Simulator Sickness (SS) was modeled based on the effects of field-of-view (FOV), stereopsis, visual motion frequency, interactivity, and predictability of motion orientation. We developed an instrument to assess the user experience using multivariate statistics and Item Response Theory. Results indicated that (1) presence was increased with a large FOV, stereo display, visual motion in low frequency ranges (.03 Hz), and high levels of interactivity; (2) more SS was reported with increasing FOV, stereo display, .05-.08 Hz visual motion frequency, lack of interactivity and predictability to visual motion; (3) enjoyment was increased with visual motion in low frequency ranges (.03 Hz) and high levels of interactivity. The resulting response surface model visualizes the complex relationships between presence, enjoyment, and SS. Overall, increasing interactivity was found to be the most profound way to enhance user experience in virtual environments.