Power efficient hardware architecture of SHA-1 algorithm for trusted mobile computing

  • Authors:
  • Mooseop Kim;Jaecheol Ryou

  • Affiliations:
  • Electronics and Telecommunications Research Institute, Daejeon, South Korea;Division of Electrical and Computer Engineering, Chungnam National University, Daejeon, South Korea

  • Venue:
  • ICICS'07 Proceedings of the 9th international conference on Information and communications security
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

The Trusted Mobile Platform (TMP) is developed and promoted by the Trusted Computing Group (TCG), which is an industry standard body to enhance the security of the mobile computing environment. The built-in SHA-1 engine in TMP is one of the most important circuit blocks and contributes the performance of the whole platform because it is used as key primitives supporting platform integrity and command authentication. Mobile platforms have very stringent limitations with respect to available power, physical circuit area, and cost. Therefore special architecture and design methods for low power SHA-1 circuit are required. In this paper, we present a novel and efficient hard-ware architecture of low power SHA-1 design for TMP. Our low power SHA-1 hardware can compute 512-bit data block using less than 7,000 gates and has a power consumption about 1.1 mA on a 0.25µm CMOS process.