Buffer-space efficient and deadlock-free scheduling of stream applications on multi-core architectures

  • Authors:
  • Jongsoo Park;William J. Dally

  • Affiliations:
  • Stanford University, Stanford, CA, USA;Stanford University, Stanford, CA, USA

  • Venue:
  • Proceedings of the twenty-second annual ACM symposium on Parallelism in algorithms and architectures
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present a scheduling algorithm of stream programs for multi-core architectures called team scheduling. Compared to previous multi-core stream scheduling algorithms, team scheduling achieves 1) similar synchronization overhead, 2) coverage of a larger class of applications, 3) better control over buffer space, 4) deadlock-free feedback loops, and 5)lower latency. We compare team scheduling to the latest stream scheduling algorithm, sgms, by evaluating 14 applications on a multi-core architecture with 16 cores. Team scheduling successfully targets applications that cannot be validly scheduled by sgms due to excessive buffer requirement or deadlocks in feedback loops (e.g., gsm and w-cdma). For applications that can be validly scheduled by sgms, team scheduling shows on average 37% higher throughput within the same buffer space constraints.