Analysis and design of an ultralow-power CMOS relaxation oscillator

  • Authors:
  • Urs Denier

  • Affiliations:
  • austriamicrosystems Switzerland AG, Rapperswil, Switzerland

  • Venue:
  • IEEE Transactions on Circuits and Systems Part I: Regular Papers
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper presents the design of a low-voltage ultralow-power relaxation oscillator without external components. The application field for this oscillator is the clock generation of low-power wake-up functions for battery-operated systems. A detailed analysis of the oscillator, including the temperature performance, is derived and verified with experimental results. The oscillator operates at a typical frequency of 3.3 kHz and consumes 11 nW from a 1-V supply at room temperature, and a temperature drift of less than 500 ppm/°C is achieved over the temperature range of -20°C to 80°C. An efficient design implementation has resulted in a cell area of 0.1 mm2 in a standard 0.35-µm digital CMOS technology.