Performance optimal speed control of multi-core processors under thermal constraints

  • Authors:
  • Vinay Hanumaiah;Sarma Vrudhula;Karam S. Chatha

  • Affiliations:
  • Arizona State University, Tempe;Arizona State University, Tempe;Arizona State University, Tempe

  • Venue:
  • Proceedings of the Conference on Design, Automation and Test in Europe
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

Advances in chip-multiprocessor processing capabilities has led to an increased power consumption and temperature hotspots. Maintaining the on-chip temperature is important from the power reduction and reliability considerations. Achieving highest performance while maintaining the temperature constraint is a challenge. We develop analytical solutions for the optimal control of frequencies for each core in a chip-multiprocessor. The objective is to reduce the makespan or the latest task completion time of all tasks. We show that the optimal frequency policy is bang-bang when the temperature constraint is not active and is exponential when the temperature constraint is active. We show that there is a significant improvement in overall throughput with our proposed solution and yet all cores operate under the thermal maximum.