Generic one round group key exchange in the standard model

  • Authors:
  • M. Choudary Gorantla;Colin Boyd;Juan Manuel González Nieto;Mark Manulis

  • Affiliations:
  • Information Security Institute, Faculty of IT, Queensland University of Technology, Brisbane, QLD, Australia;Information Security Institute, Faculty of IT, Queensland University of Technology, Brisbane, QLD, Australia;Information Security Institute, Faculty of IT, Queensland University of Technology, Brisbane, QLD, Australia;Department of Computer Science, TUDarmstadt & CASED, Germany

  • Venue:
  • ICISC'09 Proceedings of the 12th international conference on Information security and cryptology
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

Minimizing complexity of group key exchange (GKE) protocols is an important milestone towards their practical deployment. An interesting approach to achieve this goal is to simplify the design of GKE protocols by using generic building blocks. In this paper we investigate the possibility of founding GKE protocols based on a primitive called multi key encapsulation mechanism (mKEM) and describe advantages and limitations of this approach. In particular, we show how to design a one-round GKE protocol which satisfies the classical requirement of authenticated key exchange (AKE) security, yet without forward secrecy. As a result, we obtain the first one-round GKE protocol secure in the standard model. We also conduct our analysis using recent formal models that take into account both outsider and insider attacks as well as the notion of key compromise impersonation resilience (KCIR). In contrast to previous models we show how to model both outsider and insider KCIR within the definition of mutual authentication. Our analysis additionally implies that the insider security compiler by Katz and Shin from ACM CCS 2005 can be used to achieve more than what is shown in the original work, namely both outsider and insider KCIR.