Heat diffusion based dynamic load balancing for distributed virtual environments

  • Authors:
  • Yunhua Deng;Rynson W. H. Lau

  • Affiliations:
  • City University of Hong Kong, Hong Kong;City University of Hong Kong, Hong Kong

  • Venue:
  • Proceedings of the 17th ACM Symposium on Virtual Reality Software and Technology
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Distributed virtual environments (DVEs) are becoming very popular in recent years, due to their application in online gaming and social networking. One of the main research problems in DVEs is on how to balance the workload when a lot of concurrent users are accessing it. There are a number of load balancing methods proposed to address this problem. However, they either spend too much time on optimizing the partitioning process and become too slow or emphasize on efficiency and the repartitioning process becomes too ineffective. In this paper, we propose a new dynamic load balancing approach for DVEs based on the heat diffusion approach which has been studied in other areas and proved to be very effective and efficient for dynamic load balancing. We have two main contributions. First, we propose an efficient cell selection scheme to identify and select appropriate cells for load migration. Second, we propose two heat diffusion based load balancing algorithms, local and global diffusion. Our results show that the new algorithms are both efficient and effective compared with some existing methods, and the global diffusion method performs the best.