CAD reference flow for 3D via-last integrated circuits

  • Authors:
  • Chang-Tzu Lin;Ding-Ming Kwai;Yung-Fa Chou;Ting-Sheng Chen;Wen-Ching Wu

  • Affiliations:
  • Industrial Technology Research Institute, Taiwan;Industrial Technology Research Institute, Taiwan;Industrial Technology Research Institute, Taiwan;Industrial Technology Research Institute, Taiwan;Industrial Technology Research Institute, Taiwan

  • Venue:
  • Proceedings of the 2010 Asia and South Pacific Design Automation Conference
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Next-decade computing power and interconnect bottle-neck challenge conventional IC design due to the ever increasing demands for high frequency and great bandwidth. Three-dimensional large-scale integration (3D-LSI) provides an opportunity to realize such high performance cores while reducing long latency. In this paper, we present a reference flow for the implementation of 3D via-last ICs in scalable face-to-back bonding style which leverages a mature set of 2D IC physical design tools. The first enabling technology of 3D-LSI is through-silicon via (TSV). Two kinds of TSV diameters are exemplified in the flow, namely, 5μm and 50μm. We propose an easy-to-adopt method to address the TSV-aware mixed-sized placement by considering the obstructions generated from adjacent-tier's floorplan, subject to certain TSV alignment constraints. Furthermore, the technique of clock tree synthesis (CTS) for a homogeneous die stack is developed to dramatically reduce the clock latency and skew. The mixed-sized placement and CTS of each tier can be done without iteration. To the best of our knowledge, no work has ever been published in literature discussing CTS for 3D via-last integration in a face-to-back fashion. Finally, to complete the proposed flow 2D timing-driven routing and modified off-line design rule check (DRC) and layout versus schematic (LVS) verification are performed very well.