Threshold models for competitive influence in social networks

  • Authors:
  • Allan Borodin;Yuval Filmus;Joel Oren

  • Affiliations:
  • Department of Computer Science, University of Toronto, Canada;Department of Computer Science, University of Toronto, Canada;Department of Computer Science, University of Toronto, Canada

  • Venue:
  • WINE'10 Proceedings of the 6th international conference on Internet and network economics
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

The problem of influence maximization deals with choosing the optimal set of nodes in a social network so as to maximize the resulting spread of a technology (opinion, product-ownership, etc.), given a model of diffusion of influence in a network. A natural extension is a competitive setting, in which the goal is to maximize the spread of our technology in the presence of one or more competitors. We suggest several natural extensions to the well-studied linearthreshold model, showing that the original greedy approach cannot be used. Furthermore, we show that for a broad family of competitive influence models, it is NP-hard to achieve an approximation that is better than a square root of the optimal solution; the same proof can also be applied to give a negative result for a conjecture in [2] about a general cascade model for competitive diffusion. Finally, we suggest a natural model that is amenable to the greedy approach.