Brief paper: Input-to-state stability for networked control systems via an improved impulsive system approach

  • Authors:
  • Wu-Hua Chen;Wei Xing Zheng

  • Affiliations:
  • College of Mathematics and Information Science, Guangxi University, Nanning, Guangxi, 530004, PR China and School of Computing and Mathematics, University of Western Sydney, Penrith NSW 2751, Aust ...;School of Computing and Mathematics, University of Western Sydney, Penrith NSW 2751, Australia

  • Venue:
  • Automatica (Journal of IFAC)
  • Year:
  • 2011

Quantified Score

Hi-index 22.14

Visualization

Abstract

This paper presents a novel impulsive system approach to input-to-state stability (ISS) analysis of networked control systems (NCSs) with time-varying sampling intervals and delays. This approach is based upon the new idea that an NCS can be viewed as an interconnected hybrid system composed of an impulsive subsystem and an input delay subsystem. A new type of time-varying discontinuous Lyapunov-Krasovskii functional, which makes full use of the information on the piecewise-constant input and the bounds of the network delays, is introduced to analyze the ISS property of NCSs. Linear matrix inequality based sufficient conditions are derived for ISS of NCSs with respect to external disturbances. When applied to the approximate tracking problem for NCSs, the derived ISS result provides bounds on the steady-state tracking error. Numerical examples are provided to show the efficiency of the proposed approach.