Verified software toolchain

  • Authors:
  • Andrew W. Appel

  • Affiliations:
  • Princeton University

  • Venue:
  • ESOP'11/ETAPS'11 Proceedings of the 20th European conference on Programming languages and systems: part of the joint European conferences on theory and practice of software
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

The software toolchain includes static analyzers to check assertions about programs; optimizing compilers to translate programs tomachine language; operating systems and libraries to supply context for programs. Our Verified Software Toolchain verifies with machine-checked proofs that the assertions claimed at the top of the toolchain really hold in the machine-language program, running in the operating-system context, on a weakly-consistent-shared-memory machine. Our verification approach is modular, in that proofs about operating systems or concurrency libraries are oblivious of the programming language or machine language, proofs about compilers are oblivious of the program logic used to verify static analyzers, and so on. The approach is scalable, in that each component is verified in the semantic idiom most natural for that component. Finally, the verification is foundational: the trusted base for proofs of observable properties of the machine-language program includes only the operational semantics of the machine language, not the source language, the compiler, the program logic, or any other part of the toolchain--even when these proofs are carried out by source-level static analyzers. In this paper I explain some semantic techniques for building a verified toolchain.