Precise null-pointer analysis

  • Authors:
  • Fausto Spoto

  • Affiliations:
  • Università di Verona, Verona, Italy

  • Venue:
  • Software and Systems Modeling (SoSyM)
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

In Java, C or C++, attempts to dereference the null value result in an exception or a segmentation fault. Hence, it is important to identify those program points where this undesired behaviour might occur or prove the other program points (and possibly the entire program) safe. To that purpose, null-pointer analysis of computer programs checks or infers non-null annotations for variables and object fields. With few notable exceptions, null-pointer analyses currently use run-time checks or are incorrect or only verify manually provided annotations. In this paper, we use abstract interpretation to build and prove correct a first, flow and context-sensitive static null-pointer analysis for Java bytecode (and hence Java) which infers non-null annotations. It is based on Boolean formulas, implemented with binary decision diagrams. For better precision, it identifies instance or static fields that remain always non-null after being initialised. Our experiments show this analysis faster and more precise than the correct null-pointer analysis by Hubert, Jensen and Pichardie. Moreover, our analysis deals with exceptions, which is not the case of most others; its formulation is theoretically clean and its implementation strong and scalable. We subsequently improve that analysis by using local reasoning about fields that are not always non-null, but happen to hold a non-null value when they are accessed. This is a frequent situation, since programmers typically check a field for non-nullness before its access. We conclude with an example of use of our analyses to infer null-pointer annotations which are more precise than those that other inference tools can achieve.