Design of multi-channel wireless NoC to improve on-chip communication capacity

  • Authors:
  • Dan Zhao;Yi Wang;Jian Li;Takamaro Kikkawa

  • Affiliations:
  • Univ. of Louisianaat, Lafayette, Lafayette, LA;Univ. of Louisianaat, Lafayette, Lafayette, LA;IBM Research - Austin, Austin, TX;Hiroshima University, Hiroshima, Japan

  • Venue:
  • NOCS '11 Proceedings of the Fifth ACM/IEEE International Symposium on Networks-on-Chip
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

Many-core chip design has become a popular means to sustain the exponential growth of chip-level computing performance. The main advantage lies in the exploitation of parallelism, distributively and massively. Consequently, the on-chip communication fabric becomes the performance determinant. In the meantime, the introduction of Ultra-Wideband (UWB) interconnect brings in the new opportunity for giga-bps communication bandwidth, milliwatts communication power, and low cost implementation for millimeter range on-chip communication for future chip generations. In this paper, we study multi-channel wireless Network-on-Chip (McWiNoC) with ultra-short RF/wireless links for multi-hop communication. We first present the benefit of high bandwidth, low latency and flexible topology configurations provided by this new on-chip interconnection network. We then propose a distributed and deadlock-free location based routing scheme. We further design an efficient channel arbitration scheme to grant multi-channel access. With a few representative synthetic traffic patterns and SPLASH-II benchmarks, we demonstrate that McWiNoC can achieve 23.3% average performance improvement and 65.3% average end-to-end latency reduction over a baseline NoC of 8 x 8 metal wired mesh.