Protocol analysis modulo combination of theories: a case study in Maude-NPA

  • Authors:
  • Ralf Sasse;Santiago Escobar;Catherine Meadows;José Meseguer

  • Affiliations:
  • University of Illinois at Urbana-Champaign;DSIC-ELP, Universidad Politécnica de Valencia, Spain;Naval Research Laboratory, Washington DC;University of Illinois at Urbana-Champaign

  • Venue:
  • STM'10 Proceedings of the 6th international conference on Security and trust management
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

There is a growing interest in formal methods and tools to analyze cryptographic protocols modulo algebraic properties of their underlying cryptographic functions. It is well-known that an intruder who uses algebraic equivalences of such functions can mount attacks that would be impossible if the cryptographic functions did not satisfy such equivalences. In practice, however, protocols use a collection of well-known functions, whose algebraic properties can naturally be grouped together as a union of theories E1 ∪ ... ∪ En. Reasoning symbolically modulo the algebraic properties E1 ∪ ... ∪ En requires performing (E1 ∪ ... ∪ En)-unification. However, even if a unification algorithm for each individual Ei is available, this requires combining the existing algorithms by methods that are highly non-deterministic and have high computational cost. In this work we present an alternative method to obtain unification algorithms for combined theories based on variant narrowing. Although variant narrowing is less efficient at the level of a single theory Ei, it does not use any costly combination method. Furthermore, it does not require that each Ei has a dedicated unification algorithm in a tool implementation. We illustrate the use of this method in the Maude-NPA tool by means of a well-known protocol requiring the combination of three distinct equational theories.