Ergodic dynamics for large-scale distributed robot systems

  • Authors:
  • Dylan A. Shell;Maja J. Matarić

  • Affiliations:
  • Department of Computer Science, University of Southern California, Los Angeles, CA;Department of Computer Science, University of Southern California, Los Angeles, CA

  • Venue:
  • UC'06 Proceedings of the 5th international conference on Unconventional Computation
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Intelligent autonomous robotics is a promising area with many potential applications that could benefit from non-traditional models of computation. Information processing systems interfaced with the real world must deal with a continuous and uncertain environment, and must cope with interactions across a range of time-scales. Robotics problems resist existing tools and, consequently, new perspectives are needed to address these challenges. Toward that end, we describe a dynamics-based model for computing in large-scale distributed robot systems. The proposed method employs a compositional approach, constructing robot controllers from ergodic processes. We describe application of the method to two multi-robot tasks: decentralised task allocation, and collective strategy selection.