Convergence of autonomous mobile robots with inaccurate sensors and movements

  • Authors:
  • Reuven Cohen;David Peleg

  • Affiliations:
  • Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science, Rehovot, Israel;Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science, Rehovot, Israel

  • Venue:
  • STACS'06 Proceedings of the 23rd Annual conference on Theoretical Aspects of Computer Science
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

The common theoretical model adopted in recent studies on algorithms for systems of autonomous mobile robots assumes that the positional input of the robots is obtained by perfectly accurate visual sensors, that robot movements are accurate, and that internal calculations performed by the robots on (real) coordinates are perfectly accurate as well. The current paper concentrates on the effect of weakening this rather strong set of assumptions, and replacing it with the more realistic assumption that the robot sensors, movement and internal calculations may have slight inaccuracies. Specifically, the paper concentrates on the ability of robot systems with inaccurate sensors, movements and calculations to carry out the task of convergence. The paper presents several impossibility results, limiting the inaccuracy allowing convergence. The main positive result is an algorithm for convergence under bounded measurement, movement and calculation errors.