Interactive soft object simulation with quadratic finite elements

  • Authors:
  • Johannes Mezger;Wolfgang Straßer

  • Affiliations:
  • University of Tübingen, WSI/GRIS, Tübingen, Germany;University of Tübingen, WSI/GRIS, Tübingen, Germany

  • Venue:
  • AMDO'06 Proceedings of the 4th international conference on Articulated Motion and Deformable Objects
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present a new method to simulate deformable volumetric objects interactively using finite elements. With quadratic basis functions and a non-linear strain tensor, we are able to model realistic local compression as well as large global deformation. The construction of the differential equations is described in detail including the Jacobian matrix required to solve the non-linear system. The results show that the bending of solids is reflected more realistically than with the linear refinement previously used in computer graphics. At the same time higher frame rates are achieved as the number of elements can be drastically reduced. Finally, an application to virtual tissue simulation is presented with the objective to improve surgical training