Switch-based packing technique to reduce traffic and latency in token coherence

  • Authors:
  • Blas Cuesta;Antonio Robles;José Duato

  • Affiliations:
  • -;-;-

  • Venue:
  • Journal of Parallel and Distributed Computing
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

Token Coherence is a cache coherence protocol able to simultaneously capture the best attributes of traditional protocols: low latency and scalability. However it may lose these desired features when (1) several nodes contend for the same memory block and (2) nodes write highly-shared blocks. The first situation leads to the issue of simultaneous broadcast requests which threaten the protocol scalability. The second situation results in a burst of token responses directed to the writer, which turn it into a bottleneck and increase the latency. To address these problems, we propose a switch-based packing technique able to encapsulate several messages (while in transit) into just one. Its application to the simultaneous broadcasts significantly reduces their bandwidth requirements (up to 45%). Its application to token responses lowers their transmission latency (by 70%). Thus, the packing technique decreases both the latency and coherence traffic, thereby improving system performance (about 15% of reduction in runtime).