Routing-aware application mapping considering steiner points for coarse-grained reconfigurable architecture

  • Authors:
  • Ganghee Lee;Seokhyun Lee;Kiyoung Choi;Nikil Dutt

  • Affiliations:
  • Department of Electrical Engineering and Computer Science, Seoul National University, Seoul, Korea;Department of Electrical Engineering and Computer Science, Seoul National University, Seoul, Korea;Department of Electrical Engineering and Computer Science, Seoul National University, Seoul, Korea;Department of Computer Science, University of California, Irvine, Irvine, CA

  • Venue:
  • ARC'10 Proceedings of the 6th international conference on Reconfigurable Computing: architectures, Tools and Applications
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Coarse-grained reconfigurable architectures have drawn increasing attention due to their performance and flexibility. While many coarse-grained reconfigurable architectures have demonstrated impressive performance improvements, their effectiveness heavily depends on the quality of the compilers and/or mappers. However, this mapping process is difficult since it requires the solution of multiple problems simultaneously: compilation of the application and configuration of the architecture while maximally exploiting the parallelism in both the application and the architecture. Utilization of routing resources also adds to the complexity of the mapping process. In this paper, we introduce routing-aware mapping algorithms for coarse-grained reconfiguration architecture. In particular, we consider Steiner point routing, since it gives better results than spanning tree based routing. After presenting an optimal formulation using integer linear programming (that doesn’t scale), we present a fast heuristic mapping algorithm. Our experimental result on randomly generated examples shows that our algorithm considering Steiner point routing gives 10% better performance result than the one using spanning tree routing. And our heuristic algorithm finds optimal solutions for 96% of the cases on the average within a few seconds. We also convey similar results on a suite of benchmarks collected from Livermore loops, Mediabench, and DSPStone benchmarks.