Exact Quantum Algorithms for the Leader Election Problem

  • Authors:
  • Seiichiro Tani;Hirotada Kobayashi;Keiji Matsumoto

  • Affiliations:
  • NTT Corporation;National Institute of Informatics;National Institute of Informatics

  • Venue:
  • ACM Transactions on Computation Theory (TOCT)
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

This article gives a separation between quantum and classical models in pure (i.e., noncryptographic) computing abilities with no restriction on the amount of available computing resources, by considering the exact solvability of the leader election problem in anonymous networks, a celebrated unsolvable problem in classical distributed computing. The goal of the leader election problem is to elect a unique leader from among distributed parties. In an anonymous network, all parties with the same number of communication links are identical. It is well-known that no classical algorithm can exactly solve (i.e., in bounded time without error) the leader election problem in anonymous networks, even if the number of parties is given. This article devises a quantum algorithm that, if the number of parties is given, exactly solves the problem for any network topology in polynomial rounds with polynomial communication/time complexity with respect to the number of parties, when the parties are connected with quantum communication links and they have the ability of quantum computing. Our algorithm works even when only an upper bound of the number of parties is given. In such a case, no classical algorithm can solve the problem even under the zero-error setting, the setting in which error is not allowed but running time may be unbounded.