Efficient architectural support for secure bus-based shared memory multiprocessor

  • Authors:
  • Khaled Z. Ibrahim

  • Affiliations:
  • Department of Electrical Engineering, Suez Canal University, Egypt

  • Venue:
  • ACSAC'05 Proceedings of the 10th Asia-Pacific conference on Advances in Computer Systems Architecture
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

Tamper-evident and tamper-resistant systems are vital to support applications such as digital right management and certified grid computing. Recently proposed schemes, such as XOM and AEGIS, assume trusting processor state only to build secure systems. Secure execution for shared memory multiprocessor is a challenging problem as multiple devices need to be trusted. In this work, we propose a framework for providing secure execution on a bus-based multiprocessor system that tackles the key distribution problem, the overhead of encryption/decryption and the memory integrity overheads. We show how to remove the encryption/decryption latencies from the critical path of execution using pseudo one-time-pad. While verifying the integrity of all memory transactions, we use a special buffer to check for replay on a random set of memory lines. Replay can be detected with certainty of 99.99%, even if the lines replayed are less than 1%.