One-Dimensional search for reliable epipole estimation

  • Authors:
  • Tsuyoshi Migita;Takeshi Shakunaga

  • Affiliations:
  • Okayama University, Okayama, Japan;Okayama University, Okayama, Japan

  • Venue:
  • PSIVT'06 Proceedings of the First Pacific Rim conference on Advances in Image and Video Technology
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Given a set of point correspondences in an uncalibrated image pair, we can estimate the fundamental matrix, which can be used in calculating several geometric properties of the images. Among the several existing estimation methods, nonlinear methods can yield accurate results if an approximation to the true solution is given, whereas linear methods are inaccurate but no prior knowledge about the solution is required. Usually a linear method is employed to initialize a nonlinear method, but this sometimes results in failure when the linear approximation is far from the true solution. We herein describe an alternative, or complementary, method for the initialization. The proposed method minimizes the algebraic error, making sure that the results have the rank-2 property, which is neglected in the conventional linear method. Although an approximation is still required in order to obtain a feasible algorithm, the method still outperforms the conventional linear 8-point method, and is even comparable to Sampson error minimization.