Swarm robot flocking: an empirical study

  • Authors:
  • M. Fikret Ercan;Xiang Li

  • Affiliations:
  • School of Electrical and Electronic Engineering, Singapore Polytechnic, Singapore;School of Information Science and Engineering, Central South University, China

  • Venue:
  • ICIRA'11 Proceedings of the 4th international conference on Intelligent Robotics and Applications - Volume Part II
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

Robots can be used in exploration or investigation of unknown terrains especially if the environment is dangerous. It is customary to employ a sophisticated robot for such task. However, this approach is vulnerable since a failure of the robot means, failure of the entire mission. An emerging approach in robotics research is to employ many simple robots that can collectively achieve a demanding task. Even the failure of some robots should not affect the overall mission. Maneuvering such large systems poses new challenges in controlling them. In our earlier work, a control strategy, namely triangular formation algorithm (TFA), was developed and tested using simulation tools. The TFA is a local interaction strategy which basically makes three neighboring robots to form a regular triangular lattice. Simulation results show that swarm behaviors such as aggregation, flocking and obstacle avoidance can be achieved successfully. Here, we are concerned with implementing the algorithm in practice with real robots. We have developed a swarm of five robots and tested the performance of the algorithm in practice. This paper presents our initial findings.