The Computational Complexity of Nash Equilibria in Concisely Represented Games

  • Authors:
  • Grant R. Schoenebeck;Salil Vadhan

  • Affiliations:
  • Princeton University;Harvard University

  • Venue:
  • ACM Transactions on Computation Theory (TOCT)
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

Games may be represented in many different ways, and different representations of games affect the complexity of problems associated with games, such as finding a Nash equilibrium. The traditional method of representing a game is to explicitly list all the payoffs, but this incurs an exponential blowup as the number of agents grows. We study two models of concisely represented games: circuit games, where the payoffs are computed by a given boolean circuit, and graph games, where each agent’s payoff is a function of only the strategies played by its neighbors in a given graph. For these two models, we study the complexity of four questions: determining if a given strategy is a Nash equilibrium, finding a Nash equilibrium, determining if there exists a pure Nash equilibrium, and determining if there exists a Nash equilibrium in which the payoffs to a player meet some given guarantees. In many cases, we obtain tight results, showing that the problems are complete for various complexity classes.