Reducing compensatory motions in video games for stroke rehabilitation

  • Authors:
  • Gazihan Alankus;Caitlin Kelleher

  • Affiliations:
  • Washington University in St. Louis, St. Louis, Missouri, United States & Izmir University of Economics, Izmir, Turkey;Washington University in St. Louis, St. Louis, Missouri, United States

  • Venue:
  • Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
  • Year:
  • 2012

Quantified Score

Hi-index 0.01

Visualization

Abstract

Stroke is the leading cause of long-term disability among adults in industrialized nations; approximately 80% of people who survive a stroke experience motor disabilities. Recovery requires hundreds of daily repetitions of therapeutic exercises, often without therapist supervision. When performing therapy alone, people with limited motion often compensate for the lack of motion in one joint by moving another one. This compensation can impede the recovery progress and create new health problems. In this work we contribute (1) a methodology to reliably sense compensatory torso motion in the context of shoulder exercises done by persons with stroke and (2) the design and experimental evaluation of operant-conditioning-based strategies for games that aim to reduce compensatory torso motion. Our results show that these strategies significantly reduce compensatory motions compared to alternatives.