R-NoC: an efficient packet-switched reconfigurable networks-on-chip

  • Authors:
  • Hongbing Fan;Yue-Ang Chen;Yu-Liang Wu

  • Affiliations:
  • Wilfrid Laurier University, Waterloo, ON, Canada;Wilfrid Laurier University, Waterloo, ON, Canada;The Chinese University of Hong Kong, Shatin, N.T., Hong Kong

  • Venue:
  • ARC'12 Proceedings of the 8th international conference on Reconfigurable Computing: architectures, tools and applications
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

Networks-on-Chip (NoC) architectures have been proposed to replace the classical bus and point-to-point global interconnections for the next generation of multiple-core systems-on-a-chips. However, the one-to-one (unicast) based NoC communication paradigm is not efficient for one-to-many (multicast) communication requests, and the address based packet routing method lacks the capability to arrange routing globally for overall communication performance. To address these problems, we here propose a Reconfigurable NoC (R-NoC) architecture. The novelty of the R-NoC is that a structured virtual routing path can be established through the reconfiguration of routers so that packets are delivered fast along the pre-configured routing path. Load balance for overall communication performance can be achieved through the global arrangement of routing paths. In addition, custom network topology is proposed for specific set of applications to reduce the costs on area and power. Software simulations show that the structured data path approach has a significant performance improvement on multicast comparing with the traditional multiple unicast approach.