A predictive distributed congestion metric with application to technology mapping

  • Authors:
  • R. S. Shelar;S. S. Sapatnekar;P. Saxena;Xinning Wang

  • Affiliations:
  • Dept. of Electr. & Comput. Eng., Univ. of Minnesota, Minneapolis, MN, USA;-;-;-

  • Venue:
  • IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
  • Year:
  • 2006

Quantified Score

Hi-index 0.03

Visualization

Abstract

Due to increasing design complexities, routing congestion has become a critical problem in very large scale integration designs. This paper introduces a distributed metric to predict routing congestion and applies it to technology mapping that targets area and delay optimization. Our technology mapping algorithms are guided by a probabilistic congestion map for the subject graph to identify the congested regions, where congestion-optimal matches are favored. Experimental results on a set of benchmark circuits in a 90-nm technology show that congestion-aware mapping results in a reduction of 37%, on an average, in track overflows with marginal gate-area penalty as compared to conventional area-oriented technology mapping. For delay-oriented mapping, our algorithm improves track overflows by 20%, on an average, in addition to preserving or improving the delay, as compared to the conventional method.