High-speed IP routing with binary decision diagrams based hardware address lookup engine

  • Authors:
  • R. Sangireddy;A. K. Somani

  • Affiliations:
  • Dept. of Electr. Eng. & Comput. Eng., Iowa State Univ., Ames, IA, USA;-

  • Venue:
  • IEEE Journal on Selected Areas in Communications
  • Year:
  • 2006

Quantified Score

Hi-index 0.07

Visualization

Abstract

With a rapid increase in the data transmission link rates and an immense continuous growth in the Internet traffic, the demand for routers that perform Internet protocol packet forwarding at high speed and throughput is ever increasing. The key issue in the router performance is the IP address lookup mechanism based on the longest prefix matching scheme. Earlier work on fast Internet protocol version 4 (IPv4) routing table lookup includes, software mechanisms based on tree traversal or binary search methods, and hardware schemes based on content addressable memory (CAM), memory lookups and the CPU caching. These schemes depend on the memory access technology which limits their performance. The paper presents a binary decision diagrams (BDDs) based optimized combinational logic for an efficient implementation of a fast address lookup scheme in reconfigurable hardware. The results show that the BDD hardware engine gives a throughput of up to 175.7 million lookups per second (Ml/s) for a large AADS routing table with 33 796 prefixes, a throughput of up to 168.6 Ml/s for an MAE-West routing table with 29 487 prefixes, and a throughput of up to 229.3 Ml/s for the Pacbell routing table with 6822 prefixes. Besides the performance of the scheme, routing table update and the scalability to Internet protocol version 6 (IPv6) issues are discussed.