A robust image authentication method distinguishing JPEG compression from malicious manipulation

  • Authors:
  • Ching-Yung Lin;Shih-Fu Chang

  • Affiliations:
  • Dept. of Electr. Eng., Columbia Univ., New York, NY;-

  • Venue:
  • IEEE Transactions on Circuits and Systems for Video Technology
  • Year:
  • 2001

Quantified Score

Hi-index 0.00

Visualization

Abstract

Image authentication verifies the originality of an image by detecting malicious manipulations. Its goal is different from that of image watermarking, which embeds into the image a signature surviving most manipulations. Most existing methods for image authentication treat all types of manipulation equally (i.e., as unacceptable). However, some practical applications demand techniques that can distinguish acceptable manipulations (e.g., compression) from malicious ones. In this paper, we present an effective technique for image authentication which can prevent malicious manipulations but allow JPEG lossy compression. The authentication signature is based on the invariance of the relationships between discrete cosine transform (DCT) coefficients at the same position in separate blocks of an image. These relationships are preserved when DCT coefficients are quantized in JPEG compression. Our proposed method can distinguish malicious manipulations from JPEG lossy compression regardless of the compression ratio or the number of compression iterations. We describe adaptive methods with probabilistic guarantee to handle distortions introduced by various acceptable manipulations such as integer rounding, image filtering, image enhancement, or scaling-recaling. We also present theoretical and experimental results to demonstrate the effectiveness of the technique