A finite state intersection approach to propositional satisfiability

  • Authors:
  • José M. Castaño;Rodrigo Castaño

  • Affiliations:
  • -;-

  • Venue:
  • Theoretical Computer Science
  • Year:
  • 2012

Quantified Score

Hi-index 5.23

Visualization

Abstract

We use a finite state (FSA) construction approach to address the problem of propositional satisfiability (SAT). We present a very simple translation from formulas in conjunctive normal form (CNF) to regular expressions and use regular expressions to construct an FSA. As a consequence of the FSA construction, we obtain an ALL-SAT solver and model counter. This automata construction can be considered essentially a finite state intersection grammar (FSIG). We also show how an FSIG approach can be encoded. Several variable ordering (state ordering) heuristics are compared in terms of the running time of the FSA and FSIG construction. We also present a strategy for clause ordering (automata composition). Running times of state-of-the-art model counters and BDD based SAT solvers are compared and we show that both the FSA and FSIG approaches obtain an state-of-the-art performance on some hard unsatisfiable benchmarks. It is also shown that clause learning techniques can help improve performance. This work brings up many questions on the possible use of automata and grammar models to address SAT.