Frances: A Tool for Understanding Computer Architecture and Assembly Language

  • Authors:
  • Tyler Sondag;Kian L. Pokorny;Hridesh Rajan

  • Affiliations:
  • Iowa State University;McKendree University;Iowa State University

  • Venue:
  • ACM Transactions on Computing Education (TOCE)
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

Students in all areas of computing require knowledge of the computing device including software implementation at the machine level. Several courses in computer science curricula address these low-level details such as computer architecture and assembly languages. For such courses, there are advantages to studying real architectures instead of simplified examples. However, real architectures and instruction sets introduce complexity that makes them difficult to grasp in a single semester course. Visualization techniques can help ease this burden, unfortunately existing tools are often difficult to use and consequently difficult to adopt in a course where time is already limited. To solve this problem, we present Frances. Frances graphically illustrates key differences between familiar high-level languages and unfamiliar low-level languages and also illustrates how familiar high-level programs behave on real architectures. Key to this tool is that we use a simple Web interface that requires no setup, easing course adoption hurdles. We also include several features that further enhance its usefulness in a classroom setting. These features include graphical relationships between high-level code and machine code, clearly illustrated step-by-step machine state transitions, color coding to make instruction behavior clear, and illustration of pointers. We have used Frances in courses and performed experimental evaluation. Our experiences with Frances in the classroom demonstrate its usability. Most notably, in our experimental setting, students with no computer architecture course experience were able to complete lessons using Frances with no guidance.