Rendering discrete random media using precomputed scattering solutions

  • Authors:
  • Jonathan T. Moon;Bruce Walter;Stephen R. Marschner

  • Affiliations:
  • Department of Computer Science and Program of Computer Graphics, Cornell University;Department of Computer Science and Program of Computer Graphics, Cornell University;Department of Computer Science and Program of Computer Graphics, Cornell University

  • Venue:
  • EGSR'07 Proceedings of the 18th Eurographics conference on Rendering Techniques
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper addresses light transport through a discrete random medium, which we define as a volume filled with macroscopic scattering geometry generated by a random process. This formulation is more general than standard radiative transport, because it can be applied to media that are made up of closely packed scatterers. A new approach to rendering these media is introduced, based on precomputed solutions to a local multiple scattering problem, including a new algorithm for generating paths through random media that moves through the interior of the medium in large strides without considering individual scattering events. A method for rendering homogeneous isotropic random media is described that generates paths using precomputed scattering solutions compressed and randomly sampled using Nonnegative Matrix Factorization. It can efficiently render discrete media, such as a large pile of glass objects, in which the individual scatterers are visible. The method is demonstrated on scenes containing tens of thousands of transparent, specular objects that are nearly impossible to render with standard global illumination techniques.