Performance analysis of an optical circuit switched network for peta-scale systems

  • Authors:
  • Kevin J. Barker;Darren J. Kerbyson

  • Affiliations:
  • Performance and Architecture Laboratory, Los Alamos National Laboratory, NM;Performance and Architecture Laboratory, Los Alamos National Laboratory, NM

  • Venue:
  • Euro-Par'07 Proceedings of the 13th international Euro-Par conference on Parallel Processing
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

Optical Circuit Switching (OCS) is a promising technology for future large-scale high performance computing networks. It currently widely used in telecommunication networks and offers all-optical data paths between nodes in a system. Traffic passing through these paths is subject only to the propagation delay through optical fibers and optical/electrical conversions on the sending and receiving ends. High communication bandwidths within these paths are possible when using multiple wavelengths multiplexed over the same fiber. The set-up time of an OCS circuit is non-negligible but can be amortized over the lifetime of communications between nodes or by the use of multi-hop routing mechanisms. In this work, we compare the expected performance of an OCS network to more traditional networks including meshes and fat-trees. The comparison considers several current large-scale applications. We show that the performance of an OCS network is comparable to the best of the network types examined.