Dynamic modeling, stability and energy consumption analysis of a realistic six-legged walking robot

  • Authors:
  • Shibendu Shekhar Roy;Dilip Kumar Pratihar

  • Affiliations:
  • Department of Mechanical Engineering, National Institute of Technology, Durgapur, India;Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur, India

  • Venue:
  • Robotics and Computer-Integrated Manufacturing
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper deals with a detailed analysis on kinematics, dynamics, stability and energy consumption of a realistic six-legged robot. The aim of this study is to extend a previous work of Roy et al. [1], in order to estimate optimal feet forces and joint torques of the six-legged robot generating wave-gaits with four different duty factors and deal with its stability issues. Two different approaches are developed to determine optimal feet forces. In the first approach, minimization of the norm of feet forces is carried out using a least square method, whereas minimization of the norm of joint torques is performed in the second approach. The second approach is found to be more energy efficient compared to the first one. The maximum values of feet forces and joint torques are seen to decrease with the increase of duty factor. The effects of walking parameters, namely velocity, stroke and duty factors have been studied on energy consumption and stability of the robot. The variations of average power consumption and specific energy consumption with the velocity and stroke are compared for four different duty factors. Wave gait with a low duty factor is found to be more energy-efficient compared to that with a high duty factor at the highest possible velocity.