A decoupled local memory allocator

  • Authors:
  • Boubacar Diouf;Can Hantaş;Albert Cohen;Özcan Özturk;Jens Palsberg

  • Affiliations:
  • INRIA, France;Georgia Institute of Technology;INRIA and École Normale Supérieure de Paris, France;Bilkent University, Turkey;UCLA

  • Venue:
  • ACM Transactions on Architecture and Code Optimization (TACO) - Special Issue on High-Performance Embedded Architectures and Compilers
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

Compilers use software-controlled local memories to provide fast, predictable, and power-efficient access to critical data. We show that the local memory allocation for straight-line, or linearized programs is equivalent to a weighted interval-graph coloring problem. This problem is new when allowing a color interval to “wrap around,” and we call it the submarine-building problem. This graph-theoretical decision problem differs slightly from the classical ship-building problem, and exhibits very interesting and unusual complexity properties. We demonstrate that the submarine-building problem is NP-complete, while it is solvable in linear time for not-so-proper interval graphs, an extension of the the class of proper interval graphs. We propose a clustering heuristic to approximate any interval graph into a not-so-proper interval graph, decoupling spill code generation from local memory assignment. We apply this heuristic to a large number of randomly generated interval graphs reproducing the statistical features of standard local memory allocation benchmarks, comparing with state-of-the-art heuristics.