Minimum energy operation for clustered island-style FPGAs

  • Authors:
  • Peter Grossmann;Miriam E. Leeser;Marvin Onabajo

  • Affiliations:
  • Northeastern University, Boston, MA, USA;Northeastern University, Boston, MA, USA;Northeastern University, Boston, MA, USA

  • Venue:
  • Proceedings of the ACM/SIGDA international symposium on Field programmable gate arrays
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

Despite the advantages offered by field-programmable gate arrays (FPGAs) for low-power systems requiring flexible computing resources, applications with the lowest power budgets still favor microprocessors and application-specific integrated circuits (ASICs). In order for such systems to exploit FPGAs, an FPGA achieving minimum energy operation is needed. Minimum energy points have been found for ASICs and microprocessors to occur at operating voltages that are typically below the transistor threshold voltage. This paper presents two clustered island-style test chips capable of operating with a single supply voltage as low as 260 mV. This supply voltage represents the lowest voltage at which an FPGA has been successfully programmed. Test chip measurements show that the minimum energy point of both circuits is at or below this minimum operating voltage. Operation at 260 mV leads to a 40X power-delay product reduction vs. 1.5V operation. The results demonstrate a clear path forward for fabricating low voltage FPGAs that are fully compatible with existing tool flows.