Minimizing the latency of quantum circuits during mapping to the ion-trap circuit fabric

  • Authors:
  • Mohammad Javad Dousti;Massoud Pedram

  • Affiliations:
  • University of Southern California, Los Angeles, CA;University of Southern California, Los Angeles, CA

  • Venue:
  • DATE '12 Proceedings of the Conference on Design, Automation and Test in Europe
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

Quantum computers are exponentially faster than their classical counterparts in terms of solving some specific, but important problems. The biggest challenge in realizing a quantum computing system is the environmental noise. One way to decrease the effect of noise (and hence, reduce the overhead of building fault tolerant quantum circuits) is to reduce the latency of the quantum circuit that runs on a quantum circuit. In this paper, a novel algorithm is presented for scheduling, placement, and routing of a quantum algorithm, which is to be realized on a target quantum circuit fabric technology. This algorithm, and the accompanying software tool, advances state-of-the-art in quantum CAD methodologies and methods while considering key characteristics and constraints of the ion-trap quantum circuit fabric. Experimental results show that the presented tool improves results of the previous tool by about 41%.