A compression-based area-efficient recovery architecture for nonvolatile processors

  • Authors:
  • Yiqun Wang;Yongpan Liu;Yumeng Liu;Daming Zhang;Shuangchen Li;Baiko Sai;Mei-Fang Chiang;Huazhong Yang

  • Affiliations:
  • Tsinghua University, Beijing, China;Tsinghua University, Beijing, China;Tsinghua University, Beijing, China;Tsinghua University, Beijing, China;Tsinghua University, Beijing, China;Rohm Co., Ltd., Yokohama, Japan;Rohm Co., Ltd., Yokohama, Japan;Tsinghua University, Beijing, China

  • Venue:
  • DATE '12 Proceedings of the Conference on Design, Automation and Test in Europe
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

Nonvolatile processor has become an emerging topic in recent years due to its zero standby power, resilience to power failures and instant on feature. This paper first demonstrated a fabricated nonvolatile 8051-compatible processor design, which indicates the ferroelectric nonvolatile version leads to over 90% area overhead compared with the volatile design. Therefore, we proposed a compare and compress recovery architecture, consisting of a parallel run-length codec (PRLC) and a state table logic, to reduce the area of nonvolatile registers. Experimental results demonstrate that it can reduce the number of nonvolatile registers by 4 times with less than 1% overflow possibility, which leads to 43% overall processor area savings. Furthermore, we implemented the novel PRLC and defined the method to optimize the optimal parallel degree to accelerate the compressions. Finally, we proposed a reconfigurable state table architecture, which supports the reference vector selecting for different applications. With our heuristic vector selecting algorithm, the optimal vector can provide over 42% better register number reduction than other vector selecting approaches. Our method is also applicable to designs with other nonvolatile materials based registers.