Cancellation-Free circuits in unbounded and bounded depth

  • Authors:
  • Joan Boyar;Magnus Gausdal Find

  • Affiliations:
  • Department of Mathematics and Computer Science, University of Southern Denmark, Denmark;Department of Mathematics and Computer Science, University of Southern Denmark, Denmark

  • Venue:
  • FCT'13 Proceedings of the 19th international conference on Fundamentals of Computation Theory
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

We study the notion of "cancellation-free" circuits. This is a restriction of linear Boolean circuits (XOR-circuits), but can be considered as being equivalent to previously studied models of computation. The notion was coined by Boyar and Peralta in a study of heuristics for a particular circuit minimization problem. They asked how large a gap there can be between the smallest cancellation-free circuit and the smallest linear circuit. We show that the difference can be a factor Ω(n/log2n). This improves on a recent result by Sergeev and Gashkov who have studied a similar problem. Furthermore, our proof holds for circuits of constant depth. We also study the complexity of computing the Sierpinski matrix using cancellation-free circuits and give a tight Ω(nlogn) lower bound.