A constraint-based approach to solving games on infinite graphs

  • Authors:
  • Tewodros Beyene;Swarat Chaudhuri;Corneliu Popeea;Andrey Rybalchenko

  • Affiliations:
  • Technische Universtität Munchen, Munich, Germany;Rice University, Houston, USA;Technische Universtität Munchen, Munich, Germany;Microsoft Research Cambridge and Technische Universtität Munchen, Cambridge, United Kingdom

  • Venue:
  • Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
  • Year:
  • 2014

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present a constraint-based approach to computing winning strategies in two-player graph games over the state space of infinite-state programs. Such games have numerous applications in program verification and synthesis, including the synthesis of infinite-state reactive programs and branching-time verification of infinite-state programs. Our method handles games with winning conditions given by safety, reachability, and general Linear Temporal Logic (LTL) properties. For each property class, we give a deductive proof rule that --- provided a symbolic representation of the game players --- describes a winning strategy for a particular player. Our rules are sound and relatively complete. We show that these rules can be automated by using an off-the-shelf Horn constraint solver that supports existential quantification in clause heads. The practical promise of the rules is demonstrated through several case studies, including a challenging "Cinderella-Stepmother game" that allows infinite alternation of discrete and continuous choices by two players, as well as examples derived from prior work on program repair and synthesis.