Channel assignment in heterogeneous multi-radio multi-channel wireless networks: A game theoretic approach

  • Authors:
  • Xiaohui Chen;Jing Xu;Wei Yuan;Wei Liu;Wenqing Cheng

  • Affiliations:
  • -;-;-;-;-

  • Venue:
  • Computer Networks: The International Journal of Computer and Telecommunications Networking
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

Channel assignment is a challenging issue for multi-radio multi-channel wireless networks, especially in a competing environment. This paper investigates channel assignment for selfish nodes in a heterogeneous scenario, in which nodes may have different QoS requirements and thus compete for different channels with unequal bandwidth. The interaction among nodes is formulated as a non-cooperative Multi-radio Channel Assignment Game (MCAG), where Nash Equilibrium (NE) corresponds to a stable channel assignment outcome from which no individual node has the incentive to deviate. The NEs in MCAG are characterized in this paper. Since multiple NEs may exist in this game, it is natural to choose the NE that maximizes the network utility, i.e., the sum of node utilities. It is shown that the optimal NE outcome can be derived by solving an integer non-linear programming problem. Based on some observations on the radio number distribution of NE, we propose a two-stage optimization algorithm to achieve an optimal channel assignment. Finally, computer simulations validate the effectiveness of the proposed algorithm.