On spectrum sharing games

  • Authors:
  • Magnús M. Halldórsson;Joseph Y. Halpern;Li (Erran) Li;Vahab S. Mirrokni

  • Affiliations:
  • University of Iceland, Reykjavik;Cornell University, Ithaca, NY;Lucent Bell Labs, Holmdel, NJ;MIT, Cambridge, MA

  • Venue:
  • Proceedings of the twenty-third annual ACM symposium on Principles of distributed computing
  • Year:
  • 2004

Quantified Score

Hi-index 0.00

Visualization

Abstract

Each access point (AP) in a WiFi network must be assigned a channel for it to service users. There are only finitely many possible channels that can be assigned. Moreover, neighboring access points must use different channels so as to avoid interference. Currently these channels are assigned by administrators who carefully consider channel conflicts and network loads. Channel conflicts among APs operated by different entities are currently resolved in an ad hoc manner or not resolved at all. We view the channel assignment problem as a game, where the players are the service providers and APs are acquired sequentially. We consider the price of anarchy of this game, which is the ratio between the total coverage of the APs in the worst Nash equilibrium of the game and what the total coverage of the APs would be if the channel assignment were done by a central authority. We provide bounds on the price of anarchy depending on assumptions on the underlying network and the type of bargaining allowed between service providers. The key tool in the analysis is the identification of the Nash equilibria with the solutions to a maximal coloring problem in an appropriate graph. We relate the price of anarchy of these games to the approximation factor of local optimization algorithms for the maximum k-colorable subgraph problem. We also study the speed of convergence in these games.