Minimizing position uncertainty for under-ice autonomous underwater vehicles

  • Authors:
  • Baozhi Chen;Dario Pompili

  • Affiliations:
  • -;-

  • Venue:
  • Computer Networks: The International Journal of Computer and Telecommunications Networking
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

Localization underwater has been known to be challenging due to the limited accessibility of the Global Positioning System (GPS) to obtain absolute positions. This becomes more severe in the under-ice environment since the ocean surface is covered with ice, making it more difficult to access GPS or to deploy localization infrastructure. In this paper, a novel solution that minimizes localization uncertainty and communication overhead of under-ice Autonomous Underwater Vehicles (AUVs) is proposed. Existing underwater localization solutions generally rely on reference nodes at ocean surface or on localization infrastructure to calculate positions, and they are not able to estimate the localization uncertainty, which may lead to the increase of localization error. In contrast, using the notion of external uncertainty (i.e., the position uncertainty as seen by others), our solution can characterize an AUV's position with a probability model. This model is further used to estimate the uncertainty associated with our proposed localization techniques. Based on this uncertainty estimate, we further propose algorithms to minimize localization uncertainty and communication overhead. Our solution is emulated and compared against existing solutions, showing improved performance.