STiNG: a CC-NUMA computer system for the commercial marketplace

  • Authors:
  • Tom Lovett;Russell Clapp

  • Affiliations:
  • Sequent Computer Systems, Inc., 15450 SW Koll Parkway, Beaverton, Oregon;Sequent Computer Systems, Inc., 15450 SW Koll Parkway, Beaverton, Oregon

  • Venue:
  • ISCA '96 Proceedings of the 23rd annual international symposium on Computer architecture
  • Year:
  • 1996

Quantified Score

Hi-index 0.02

Visualization

Abstract

"STiNG" is a Cache Coherent Non-Uniform Memory Access (CC-NUMA) Multiprocessor designed and built by Sequent Computer Systems, Inc. It combines four processor Symmetric Multi-processor (SMP) nodes (called Quads), using a Scalable Coherent Interface (SCI) based coherent interconnect. The Quads are based on the Intel P6 processor and the external bus it defines. In addition to 4 P6 processors, each Quad may contain up to 4 GBytes of system memory, 2 Peripheral Component Interface (PCI) busses for I/O, and a Lynx board. The Lynx board provides the datapath to the SCI-based interconnect and ensures system-wide cache coherency. STiNG is one of the first commercial CC-NUMA systems to be built. This paper describes the motivation for building STiNG as well as its architecture and implementation. In addition, performance analysis is provided for On-Line Transaction Processing (OLTP) and Decision Support System (DSS) workloads. Finally, the status of the current implementation is reviewed.