New Encoding/Decoding Methods for Designing Fault-Tolerant Matrix Operations

  • Authors:
  • D. L. Tao;C. R. P. Hartmann;Yunghsing S. Han

  • Affiliations:
  • -;-;-

  • Venue:
  • IEEE Transactions on Parallel and Distributed Systems
  • Year:
  • 1996

Quantified Score

Hi-index 0.00

Visualization

Abstract

Algorithm-based fault tolerance (ABFT) can provide a low-cost error protection for array processors and multiprocessor systems. Several ABFT techniques (weighted check-sum) have been proposed to design fault-tolerant matrix operations. In these schemes, encoding/decoding uses either multiplications or divisions so that overhead is high. In this paper, new encoding/decoding methods are proposed for designing fault-tolerant matrix operations. The unique feature of these new methods is that only additions and subtractions are used in encoding/decoding. In this paper, new algorithms are proposed to construct error detecting/correcting codes with the minimum Hamming distance 3 and 4. We will show that the overhead introduced due to the incorporation of fault tolerance is drastically reduced by using these new coding schemes.