Pointer analysis for multithreaded programs

  • Authors:
  • Radu Rugina;Martin Rinard

  • Affiliations:
  • Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, MA;Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, MA

  • Venue:
  • Proceedings of the ACM SIGPLAN 1999 conference on Programming language design and implementation
  • Year:
  • 1999

Quantified Score

Hi-index 0.01

Visualization

Abstract

This paper presents a novel interprocedural, flow-sensitive, and context-sensitive pointer analysis algorithm for multithreaded programs that may concurrently update shared pointers. For each pointer and each program point, the algorithm computes a conservative approximation of the memory locations to which that pointer may point. The algorithm correctly handles a full range of constructs in multithreaded programs, including recursive functions, function pointers, structures, arrays, nested structures and arrays, pointer arithmetic, casts between pointer variables of different types, heap and stack allocated memory, shared global variables, and thread-private global variables.We have implemented the algorithm in the SUIF compiler system and used the implementation to analyze a sizable set of multithreaded programs written in the Cilk multithreaded programming language. Our experimental results show that the analysis has good precision and converges quickly for our set of Cilk programs.