Recursive Cube of Rings: A New Topology for Interconnection Networks

  • Authors:
  • Yuzhong Sun;Paul Y. S. Cheung;Xiaola Lin

  • Affiliations:
  • Univ. of Hong Kong, Hong Kong;Univ. of Hong Kong, Hong Kong;Univ. of Hong Kong, Hong Kong

  • Venue:
  • IEEE Transactions on Parallel and Distributed Systems
  • Year:
  • 2000

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, we introduce a family of scalable interconnection network topologies, named Recursive Cube of Rings (RCR), which are recursively constructed by adding ring edges to a cube. RCRs possess many desirable topological properties in building scalable parallel machines, such as fixed degree, small diameter, wide bisection width, symmetry, fault tolerance, etc. We first examine the topological properties of RCRs. We then present and analyze a general deadlock-free routing algorithm for RCRs. Using a complete binary tree embedded into an RCR with expansion-cost approximating to one, an efficient broadcast routing algorithm on RCRs is proposed. The upper bound of the number of message passing steps in one broadcast operation on a general RCR is also derived.