Clock synchronization with faults and recoveries (extended abstract)

  • Authors:
  • Boaz Barak;Shai Halevi;Amir Herzberg;Dalit Naor

  • Affiliations:
  • The Weizmann Institute of Science;IBM Watson Research Center;IBM Haifa Research Lab;IBM Almaden Research Center

  • Venue:
  • Proceedings of the nineteenth annual ACM symposium on Principles of distributed computing
  • Year:
  • 2000

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present a convergence-function based clock synchronization algorithm, which is simple, efficient and fault-tolerant. The algorithm is tolerant of failures and allows recoveries, as long as less than a third of the processors are faulty 'at the same time'. Arbitrary (Byzantine) faults are tolerated, without requiring awareness of failure or recovery. In contrast, previous clock synchronization algorithms limited the total number of faults throughout the execution, which is not realistic, or assumed fault detection.The use of our algorithm ensures secure and reliable time services, a requirement of many distributed systems and algorithms. In particular, secure time is a fundamental assumption of proactive secure mechanisms, which are also designed to allow recovery from (arbitrary) faults. Therefore, our work is crucial to realize these mechanisms securely.