Adaptive forward differencing for rendering curves and surfaces

  • Authors:
  • Sheue-Ling Lien;Michael Shantz;Vaughan Pratt

  • Affiliations:
  • Sun Microsystems, Inc., Mountain View, CA;Sun Microsystems, Inc., Mountain View, CA;Sun Microsystems, Inc., Mountain View, CA

  • Venue:
  • SIGGRAPH '87 Proceedings of the 14th annual conference on Computer graphics and interactive techniques
  • Year:
  • 1987

Quantified Score

Hi-index 0.00

Visualization

Abstract

An adaptive forward differencing algorithm is presented for rapid rendering of cubic curves and bicubic surfaces. This method adjusts the forward difference step size so that approximately one pixel is generated along an ordinary or rational cubic curve for each forward difference step. The adjustment involves a simple linear transformation on the coefficients of the curve which can be accomplished with shifts and adds. This technique combines the advantages of traditional forward differencing and adaptive subdivision. A hardware implementation approach is described including the adaptive control of a forward difference engine. Surfaces are rendered by drawing many curves spaced closely enough together so that no pixels are left unpainted. A simple curve anti-aliasing algorithm is also presented in this paper. Anti-aliasing cubic curves is supported via tangent vector output at each forward difference step. The adaptive forward differencing algorithm is also suitable for software implementation.